

FICHA TÉCNICA FT 392 – REV00

Data: 14/02/2023



Imagem meramente ilustrativa

### Especificação Técnica

Ventosa de alta performance combinada modelo Kombat, quadrifunção, fechamento lento, passagem reduzida, com flange, padrão construtivo conforme EN 1074-4 e AWWA C512, para aplicação em água tratada, com temperatura máxima de 60°C e irrigação, nos DNs 50 a 200 mm. Pressão máxima de serviço de até 4 Mpa e mínima de 0,02 Mpa. Flanges de acordo com as normas EN 1092/2, furação conforme NBR 7675, e ANSI 150. Revestimento em epóxi azul RAL 5005. Corpo e tampa em ferro dúctil, flutuador confeccionado em polipropileno e anéis de vedação em NBR.

### Campo de Aplicação

Ventosas combinadas quadrifunção, de fechamento lento, são utilizadas para expelir o ar em condições de trabalho sob pressão ou na saída e admissão de grandes fluxos de ar durante os processos de esvaziamento e enchimento com velocidade controlada. Aplicação em redes de irrigação e distribuição de água. Em geral, este modelo é usado em mudanças de inclinação e pontos altos para proporcionar melhor controle do ar e proteção eficaz contra golpes de aríete.





FICHA TÉCNICA FT 392 – REV00

Data: 14/02/2023



Imagem meramente ilustrativa

### **Principais Características**

- O enchimento descontrolado da tubulação e fenômenos transitórios causam o fechamento rápido das ventosas do sistema, com efeitos prejudiciais. Nesses casos, a ventosa LNX 3F RFP KOMBAT diminui automaticamente o fluxo de descarga de ar, reduzindo a velocidade da coluna de água e assim minimizando o risco de golpes de aríete;
- Redução dos riscos de vazamento de água durante o fechamento e riscos de inundação da válvula devido ao rápido enchimento da tubulação a baixa pressão;
- Corpo de passagem reduzida, total em ferro fundido dúctil PN 40, fornecido com guias internas para orientação precisa do flutuador;
- Bloco móvel central composto por um flutuador e disco superior cilíndrico, projetados com controle de compressão para evitar o processo de desgaste, e por um disco RFP antigolpe;
- Tampa em ferro fundido dúctil e tela superior em aço inoxidável na versão standard, para evitar a entrada de insetos, com três saídas opcionais (para aplicações submersas, somente entrada de ar, somente saída de ar).





FICHA TÉCNICA FT 392 – REV00

Data: 14/02/2023

### **Características Construtivas**

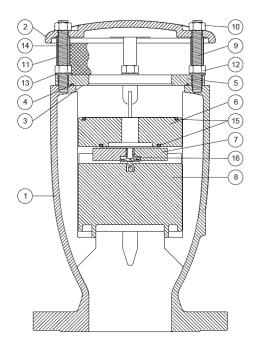



Imagem meramente ilustrativa

| Nº | Componentes                        | Materiais                       |  |  |  |  |  |
|----|------------------------------------|---------------------------------|--|--|--|--|--|
| 1  | Corpo                              | Ferro fundido dúctil GJS 450-10 |  |  |  |  |  |
| 2  | Tampa                              | Ferro fundido dúctil GJS 450-10 |  |  |  |  |  |
| 3  | O'ring                             | D'ring NBR                      |  |  |  |  |  |
| 4  | O'ring                             | NBR                             |  |  |  |  |  |
| 5  | Sede Aço com revestimento em epóxi |                                 |  |  |  |  |  |
| 6  | Disco RFP com O'ring               | Polipropileno                   |  |  |  |  |  |
| 7  | Disco obturador Polipropileno      |                                 |  |  |  |  |  |
| 8  | Flutuador                          | Polipropileno                   |  |  |  |  |  |
| 9  | Parafusos                          | Aço inoxidável AISI 304         |  |  |  |  |  |
| 10 | Porcas                             | Aço inoxidável AISI 304         |  |  |  |  |  |
| 11 | Espaçadores                        | Aço inoxidável AISI 304         |  |  |  |  |  |
| 12 | Porcas                             | Aço inoxidável AISI 304         |  |  |  |  |  |
| 13 | Arruelas Aço inoxidável AISI 304   |                                 |  |  |  |  |  |
| 14 | Tela Aço inoxidável AISI 304       |                                 |  |  |  |  |  |
| 15 | O-ring                             | NBR                             |  |  |  |  |  |
| 16 | Bocal Aço inoxidável AISI 316      |                                 |  |  |  |  |  |





FICHA TÉCNICA FT 392 – REV00

Data: 14/02/2023

### Princípio de Funcionamento



### Descarga de Grandes Volumes de AR

Durante o processo de enchimento da tubulação, é necessário expelir um volume de ar equivalente ao volume de água que flui para dentro do tubo. A de ventosa alta performance RFP, devido à forma aerodinâmica de seu corpo de passagem reduzida e ao defletor, impede o fechamento antecipado do bloco móvel durante esta fase.



### Saída de Ar Controlada

Se a pressão do ar durante o enchimento da tubulação, aumentar além de um certo valor, com o risco de golpe de aríete e danos ao sistema, o disco RFP superior se eleva automaticamente reduzindo a descarga e, consequentemente, a velocidade da coluna de água que aproxima.



### Saída de Ar em Condições de Trabalho

Durante o funcionamento. bolsas de ar acumulam em cima das ventosas. Gradualmente as bolsas se comprimem até sua pressão ser a mesma que a da água, de modo que o aumento de volume empurra a água para baixo, permitindo a liberação do ar através do orifício.



### Admissão de Grandes Volumes de AR

Durante a drenagem ou em caso de ruptura de um tubo, é necessário admitir um fluxo de ar equivalente ao fluxo de água que sai da tubulação, a fim de evitar condições depressivas e graves danos à rede.

Imagens meramente ilustrativas





FICHA TÉCNICA FT 392 – REV00

Data: 14/02/2023

### Funções opcionais



Versão quebra-vácuo 2F RFP, para permitir a entrada de grandes volumes de ar e somente fluxo de saída controlado. Este modelo é normalmente recomendado em mudanças de declive, longos segmentos ascendentes, sistemas de incêndio secos, e onde o efeito martelo de água tem que ser reduzido sem a necessidade de liberação de ar.

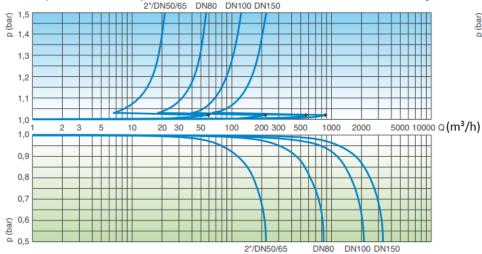


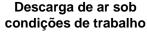
Versão para aplicações submersas, série SUB, disponível para os modelos 3F RFP e 2F RFP, com cotovelo roscado para transporte aéreo. O projeto surgiu da necessidade de ter uma válvula de ar funcionando também em caso de inundação, sem o risco de contaminação da água entrando na tubulação. Outra vantagem do modelo SUB é que ele evita o vazamento de água durante o fechamento da ventosa.

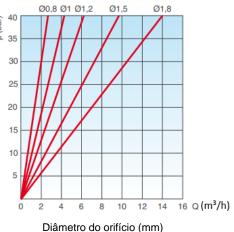


Versão para descarga de ar apenas série EO, disponível para os modelos 3F RFP e 2F RFP. A aplicação mais importante do modelo EO é permitir a instalação da válvula de ar nos locais onde o sistema HGL pode cair abaixo do perfil da tubulação, e para qualquer outro ponto onde deve ser evitada a entrada de ar, como em linhas de sucção de bombas ou sifões.



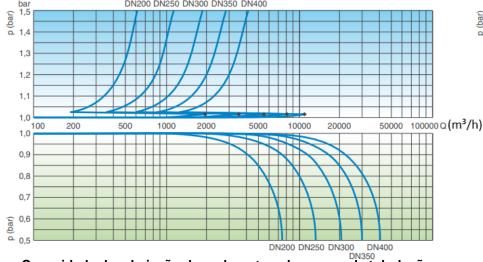




FICHA TÉCNICA FT 392 – REV00

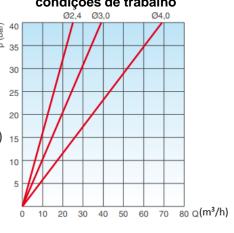

Data: 14/02/2023

### **Curvas de Capacidade**








Capacidade de admissão de ar durante a drenagem da tubulação

### Capacidade de expulsão de ar durante o enchimento da tubulação



### Descarga de ar sob condições de trabalho



Diâmetro do orifício (mm)

Capacidade de admissão de ar durante a drenagem da tubulação

**Nota:** As curvas de capacidade foram criadas em Kg/s de acordo com testes de laboratório e análises numéricas, e depois convertidas em m³/h usando um fator de segurança.





FICHA TÉCNICA FT 392 – REV00

Data: 14/02/2023

### Dimensões e Massas (1)

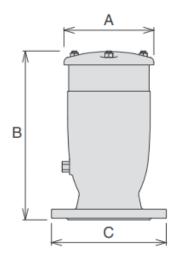



Imagem meramente ilustrativa

| DN  | Α   | В   | С   | Diâmetro orifício (mm) |      |      |      | Massa |
|-----|-----|-----|-----|------------------------|------|------|------|-------|
|     | mm  | mm  | mm  | PN10                   | PN16 | PN25 | PN40 | kg    |
| 50  | 117 | 250 | 165 | 1,5                    | 1,2  | 1,0  | 0,8  | 6,8   |
| 80  | 141 | 305 | 200 | 1,8                    | 1,5  | 1,2  | 1,0  | 10,8  |
| 100 | 172 | 303 | 220 | 1,8                    | 1,5  | 1,2  | 1,0  | 13,8  |
| 150 | 206 | 337 | 285 | 3,0                    | 2,4  | 1,8  | 1,2  | 23,0  |
| 200 | 285 | 555 | 340 | 4,0                    | 3,0  | 2,4  | 1,8  | 55,0  |

<sup>(1)</sup> Dimensões e massas sujeitos a variações.

